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Abstract 
Speech data has the potential to become a powerful tool to 
provide quantitative information about emotion beyond that 
achieved by subjective assessments. Based on this concept, we 
investigate the use of speech to identify effects in subjects 
under the influence of two different drugs: Oxytocin (OT) and 
3,4-methylenedioxymethamphetamine (MDMA), also known 
as ecstasy. We extract a set of informative phonological 
features that can characterize emotion. Then, we perform 
classification to detect if the subject is under the influence of a 
drug. Our best results show low error rates of 13% and 17% 
for the subject classification of OT and MDMA vs. placebo, 
respectively. We also analyze the performance of the features 
to differentiate the two levels of MDMA doses, obtaining an 
error rate of 19%. The results indicate that subtle emotional 
changes can be detected in the context of drug use. 
Index Terms: Phonology, Emotion, Oxytocin, MDMA. 

1.� Introduction 
The effects of psychoactive drugs are generally reported 

through introspective, subjective measures. However, 
objective quantitative measures would be a useful addition as 
they would help to minimize subject evaluation biases and 
inaccurate self-reports. In recent years, researchers have 
focused on providing alternative evaluations to be used as an 
objective tool to aid clinical diagnoses. An ideal source is 
speech due to its low cost, easy acquisition and high 
reliability. Current studies have focused on the use of speech 
to detect a variety of disorders such as Alzheimer’s [1], [2] 
and Parkinson’s Disease [3]. In addition, speech has been 
explored to detect emotional states [4]–[6]. We propose an 
acoustics-based approach to characterize the effects of two 
well-known drugs: Oxytocin (OT) and 3,4-
methylenedioxymethamphetamine (MDMA). 

MDMA, commonly known as ecstasy, is a popular drug in 
social settings [7]. Following ingestion, large amounts of 
serotonin are released, causing elevated mood, empathy and 
emotional closeness [8] and producing effects such as 
sociability, amicability, and interpersonal closeness [9]–[14]. 

In the case of OT, commonly known as the “love 
hormone”, studies have also associated this drug with positive 

emotional valence. Burkett and Young [15] found that the 
effects of using OT has much in common with the effects of 
social bonding and attachment. Other researchers have found 
that OT induces prosocial and affiliative behavior [16]–[18]. 
Some studies have found that both OT and MDMA are 
positively correlated with amicability and gregariousness, 
although there appears to be a stronger correlation with OT 
than with MDMA [19]. Overall, MDMA and OT have 
overlapping but not identical effects, as reported in several 
prosocial effect studies [20]–[22]. Based on this previous 
work, we focused our analysis on the extraction of acoustic 
features that can capture these positive emotions. 

Prior work has used numerous acoustic features to 
recognize the emotional content of speech, including prosody, 
articulation and spectral energy distribution [23], as well as 
Mel-frequency cepstral coefficients (MFCC) [4], [24]–[27]. 
For example, in [28], the authors showed that mean values of 
MFCCs can help differentiate between boredom and neutral 
emotions, the latter presenting lower mean MFCC values. The 
position of the formants in the vowel space has also been 
studied for speech emotion recognition [5], with the finding 
that formant frequency values are affected by the valence 
dimension. They found that positive emotions have higher 
second formant (F2) values. The authors also found a similar 
trend of high values of F2 and F1 for high arousal. 

In this work, we characterize the effects on speech of 
MDMA and Oxytocin, compared to a placebo, using a set of 
phonological features as described in the following section. To 
the best of our knowledge, this is the first attempt to 
characterize the acoustics of speech in subjects who are under 
the influence of different drugs. In addition, we evaluate the 
impact of the extracted features in a classification task to 
differentiate the effect of the consumption of any of these 
drugs based on the speech analysis. 

2.� Methods 

2.1� Database 

2.1.1 Participants 

Participants were recruited under procedures approved by the 
University of Chicago Institutional Review Board and 
consisted of 32 healthy subjects: 12 females (F) and 20 males 
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(M). The two gender groups were matched by age (F: 24.6 + 
4.7 years, M: 24.1 + 4.5 years). Exclusion criteria included 
medical illness, psychiatric disorder, body mass index outside 
[18.5, 30] kg/m2, cardiovascular disease, prior adverse ecstasy 
response, pregnancy and lactancy. 

2.1.2 Design and Protocol 

Participants received placebo, OT and two doses of MDMA 
(0.75 mg/kg and 1.5 mg/kg) at 4 different sessions. The order 
in which participants received the drugs was randomized. 
Participants were asked to abstain from food consumption for 
2 hours; cannabis for 7 days; alcohol or medications for 24 
hours; and all other illicit drugs for 48 hours prior to taking 
each drug. The latter requirement was verified with urine, 
saliva, and breathalyser tests. In addition, pregnancy tests were 
administered for female participants. Speech was recorded 
during the expected peak effect of each drug [35]. 

2.1.3 Procedure 

Participants were asked to speak for five minutes. During each 
session, the research assistant started the voice recorder and 
then left the room. Thus, all speech was pure monologue, with 
no listener. Participants’ speech was recorded at 44.1 kHz in 
WMA format. 

2.2� Preprocessing 

The initial and final 30 seconds of each 5-minute recording 
were removed to ensure better reliability of the context of the 
speech. 

2.3� Feature Extraction 

Eight different types of features were used to characterize the 
speech of subjects under placebo, MDMA and OT. The 
feature set (summarized in Table 1) is described here. 

2.3.1 Pitch 

Pitch was obtained using the autocorrelation method in Praat 
software for 40 ms samples [29]. For a better estimation, a 
Hanning window of 5 ms was used. Since we obtained a pitch 
distribution for each recording, we extracted 6 types of 
statistical descriptors. Median and interquartile range (IQR) 
are used instead of mean and standard deviation to avoid the 
effect of outliers. Then, we extracted the 5th (pct5) and 95th 
(pct95) percentile values to represent minimum and maximum 
estimates and the 3rd and 4th moments (skewness and kurtosis) 
to characterize the shape of the distribution.  

2.3.2 Vowel space 

Changes in the formant distribution have been associated with 
changes in emotion [5]. Therefore, we also extracted features 
from the formant space. First, we extracted the vowels for 
each recording using a Praat plug-in; details can be found in 
[30], [31]. Then, for each frame, we applied a pre-emphasis 
filter at 50 Hz, and extracted 5 formants, setting the maximum 
formant frequency to 5000 and 5500 Hz for males and 
females, respectively. Although 5 formants were extracted, we 
only analyzed the values of the first three (F1, F2 and F3).  In 
addition to calculating the formant values, we also extracted 
the information of the bandwidth of each of the formants (B1, 
B2, B3). Since these features were extracted in 25 ms-wide 
windows from the 4-minute speech recording, we calculate the 
median, IQR, pct5, pct95, skewness and kurtosis for each 

formant and their bandwidth information. To complement 
these features, we also compute the orientation (angle) of the 
distribution of samples in the vowel space (F1 vs. F2) to find 
if there was a rotation of the vowel space given the use of 
different drugs. 

2.3.3 Long Term Average Spectra (LTAS) 

Changes in the LTAS have been shown to be a significant 
marker of improvement after voice therapy [32]. For this 
work, we computed the LTAS for the entire 4-minute speech 
sample. To characterize the spectra, we computed the slope of 
the energy, the energy at the highest peak and its 
corresponding frequency value. We also computed the median 
and the IQR of the energy. 

2.3.4 Pause duration 

Speech is not a continuous barrage of acoustic energy; rather, 
speakers pause between syllables and words. We detected and 
extracted duration of pauses, using the following parameters: 
silence threshold of -25 dB, minimum duration of 100 ms, and 
minimum pitch 75 Hz. To characterize the distribution, we 
extracted median, IQR, pct5, pct95, skewness and kurtosis. 

2.3.5 Sounding duration 

We also measured the duration of words produced by the 
speaker, with pauses removed; namely, the duration of sound 
produced when the speaker was speaking. Again, we extracted 
median, IQR, pct5, pct95, skewness and kurtosis. 

2.3.6 Syllable Nuclei 

To characterize speech rate, we used the method proposed by 
Jong et al. in [33]. We estimated the number of syllables in 
each recording and used that to compute two features: speech 
rate (number of syllables over the 4 minutes of recording), and 
articulation rate (number of syllables over the 4 minutes of 
recording after pauses were removed). 

2.3.7 Spectral Flatness 

This feature characterizes the audio spectrum by looking at its 
shape. It has been previously associated with different 
emotional states [34]. Spectral flatness is a ratio of the 
geometric mean and arithmetic mean of the power spectra.  

2.3.8 Mel Frequency Cepstral Coefficients (MFCCs) 

Sixteen MFCCs were calculated as suggested in [3]. The 
values were estimated for windows of 25 ms with 10 ms 
overlap. We computed the median value and IQR for all the 
coefficients calculated over 4 minutes of recording and used 
those values as features.  

Table 1: Summary of all features  

Feature Number Description 
1-6 Pitch 

7-43 Vowel space features 
44-48 LTAS 
49-54 Pause duration 
55-60 Sounding duration 
61-62 Syllable nuclei 

63 Spectral flatness 
64-95 MFCCs (16) 
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2.4� Statistical analysis 

A total of 95 phonological features were extracted from each 
recording. To evaluate if the features can provide some insight 
into how the tested drugs affect the speech acoustics, we 
performed Wilcoxon signed-rank tests because we cannot 
assume a normal distribution for each feature. In addition, we 
performed a false discovery rate (FDR) correction at q<0.05 to 
correct for multiple comparisons.  

2.5� Classification 

The main purpose of this analysis was to see if we can 
differentiate the effects of each drug from placebo. To 
evaluate the potential of these features, we calculate the 
performance of the 6 possible binary classification tasks. Since 
drug and placebo effects were measured in the same pool of 
subjects, our analyses were conducted on the within-subject 
drug effects normalized to the baseline. For example, to 
classify placebo vs. OT, we classify placebo-OT vs. OT-
placebo. In this way, any irrelevant inter-subject differences 
(e.g. pitch in women is generally higher than in men) was 
subtracted out. 

After feature standardization (mean = 0 and standard 
deviation = 1), we perform a two-sample t-test to rank our 
features. Then we select the subsets of the most informative 
features and apply 7 classifiers, which are specified in Table 4. 
The classification performance was estimated via a leave-one-
subject-out cross-validation approach, its parameters being 
selected via an internal 5-fold cross-validation. In other words, 
a nested cross-validation scheme was used to calculate 
classification error rates and optimal parameters. 

3.� Results & Discussion 

3.1� Statistical analysis 

Table 3 shows the top 5 features with lowest p-value obtained 
for the paired comparison between placebo and the three drug 
categories. We observe that for OT the p-values are lower than 
for MDMA features. This indicates that there is higher 
divergence from placebo in the phonological elements of 
speech for participants under the influence of OT compared to 
MDMA. We also observe that most of the features with low p-
value and especially those that pass FDR correction (marked 
by * in Table 2) are related to changes in F2. When we look at 
the sign direction, we find that the values of F2 were higher 
for OT than for placebo. This correlates with prior work of 
Goudbeek et al. [5], showing that positive valence (elation, 
pleasure, etc.) resulted in higher F2 values. Our findings also 
indicate that the variability of F2 (IQR F2) decreases for 
subjects under the influence of OT. This can be seen by 
looking at the distributions of IQR values shown in the bottom 
row of Figure 1.  This difference is very strong for OT, though 
it can also be observed for the two doses of MDMA (higher 
change at 1.5mg/kg). Previous research in formant information 
to detect emotion [24] showed an association between low F2 
variability and subjects expressing happiness. This means that 
positive changes of mood are captured by this feature. 

One of the phonological features that showed a significant 
difference between placebo and MDMA 0.75mg/kg is pitch 
(see Table 2 and Figure 1): Participants’ speech was pitched 
lower when they were using MDMA as compared to placebo. 
The same numerical trend is observed for OT, but the 
difference did not pass the FDR correction (p-value = 0.03). 

At the higher dose of MDMA (1.5 mg/kg), this significant 
difference of pitch between the drug and placebo conditions 
disappears (p-value = 0.34), although there is a slight 
numerical increase in pitch compared to placebo, especially at 
higher pitch values (likely in female subjects). The potentially 
differing effects of psychoactive drugs on men and women 
should be further evaluated in future studies. Overall, the 
significance is lower for placebo vs. MDMA 1.5mg/kg with 
only 3 features with p-value < 0.05, none of them passing 
FDR correction. We observe that the most significant is the 
median of MFCC #12. When we analyze the distribution of 
the values, we observe that the values of the coefficient are 
higher for subjects under placebo. 

Table 2:  Wilcoxon signed rank test results (top 5) 

Category p-value Feature 
Description 

MDMA 
(0.75mg/kg) 

 

5.23E-4* Median pitch 
1.74E-3 Percentile 5 pitch 
1.11E-2 IQR MFCC #13 
1.32E-2 Percentile 95 pitch 
1.71E-2 Percentile 95 B3 

MDMA 
(1.5mg/kg) 

6.5E-3 Median MFCC #12 
2.20E-2 Percentile 5 F3 
2.42E-2 Percentile 5 B2 
6.28E-2 Kurtosis B1 
6.28E-2 IQR pause duration 

Oxytocin 

2.75E-4* Kurtosis F2 
8.45E-4* IQR F2 
2.86E-3 Kurtosis B1 
3.22E-3 Skewness B1 
4.35E-2 Percentile 5 of F2 

3.2� Classification Results 

Table 3 summarizes our classification results for each of the 6 
combinations of placebo, MDMA 0.75 mg/kg, MDMA 1.5 
mg/kg, and OT. We observe that the lowest classification error 
is obtained when OT is compared to placebo, regardless of the 
classifier being evaluated. The lowest error is obtained for 
nearest neighbor (error rate 0.13). 

We also calculated the area under the ROC curve (AUC) 
shown in Fig. 2 obtaining 0.92. This is consistent with our 
prior statistical analysis, where more informative features 
were found for OT vs. placebo. In the case of MDMA 
0.75mg/kg vs. placebo a low error rate of 0.17 (AUC = 0.81) 
is achieved with Random Forests. For this category, other 
classifiers have good performance too. However, when 
placebo is compared with MDMA 1.5mg/kg, the error rate is 
between 0.31 and 0.38. Despite being higher than chance 
probability, these results may be related to the fact that sex 
may have a different response in MDMA in higher doses.  

When we perform classification to differentiate between 
the two levels of MDMA, we obtain a low error rate of 0.19. 
This could mean that a higher dose of 1.5mg/kg can change 
speech effects in a reversed direction. For example, pitch 
becomes lower for the low dose but when the dose increases, 
we observe that the pitch starts becoming slightly higher in 
comparison with the lower dose, though the difference is not 
significant compared to placebo. Effects of MDMA at a yet 
higher dose need to be investigated to see if pitch increases 
even more.  

Overall, the number of features used to obtain the best 
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results are low except for OT vs. MDMA 1.5mg/kg, where a 
higher number of features is required to obtain a better 
performance. This finding may be attributed to the high 
variability in MDMA 1.5mg/kg. 

 
Figure 1: Comparison of distributions between drugs and placebo for: Median pitch (top row) and IQR F2 (bottom row). 

Table 3: Error rate for each comparison and classifier, with the optimal number of features listed in parentheses. Bolded values 
show the classifier with the lowest error rate. 

Classifier PBO vs. 
MDMA 0.75 

PBO vs. 
MDMA 1.5 

PBO vs. 
OT 

MDMA 1.5 vs. 
MDMA 0.75 

OT vs. 
MDMA 0.75 

OT vs. 
MDMA 1.5 

Logistic Regression 0.22(5) 0.34(3) 0.22(5) 0.19(3) 0.31(3) 0.38(50) 
Nearest Neighbors 0.36(3) 0.34(all) 0.13(5) 0.19(3) 0.25(5) 0.28(60) 

Naive Bayes 0.34(3) 0.31(3) 0.16(10) 0.19(3) 0.31(3) 0.34(10) 
Lasso 0.25(5) 0.38(3) 0.19(5) 0.25(3) 0.31(3) 0.38(80) 

Linear SVM 0.32(3) 0.31(3) 0.19(5) 0.22(3) 0.28(3) 0.34(50) 
Elastic SVM 0.25(70) 0.34(3) 0.16(5) 0.25(3) 0.25(3) 0.31(60) 

Random Forest 0.17(15) 0.33(3) 0.19(20) 0.23(3) 0.25(3) 0.30�3) 

4.� Conclusions 
We present the first study that uses acoustic characteristics of 
speech to identify the presence and type of drugs. The most 
relevant features correlate with positive valence, which 
supports previous research of drug effects using subjective 
analyses.  

Recent work conducted by some of our co-authors on a 
reduced dataset [37] found that the semantic analysis in speech 
can differentiate when a participant is under the influence of a 
placebo vs. MDMA. Our next step is to integrate both 
modalities (semantic and acoustic analysis) to find 
complementary features that can help achieve a higher 
differentiation between the categories. 

Our results suggest that phonological features may be a 
potential future solution to replace subjective analyses to 
improve the reliability of the clinical studies for drug effects 

assessments. For future work, we plan to correct the effects of 
sex as well as incorporate semantic analysis to further improve 
our results. 
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Figure 2: ROC curves for the best performance classifiers (see 

Table 3) between placebo and different drugs. 
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